
EcoDroid: An Approach for Energy-Based Ranking
of Android Apps

Reyhaneh Jabbarvand, Alireza Sadeghi, Joshua Garcia, Sam Malek, Paul Ammann
Department of Computer Science

George Mason University
Fairfax, Virginia, USA

{rjabbarv, asadeghi, jgarci40, smalek, pammann}@gmu.edu

Abstract—The ever increasing complexity of mobile apps
comes with a higher energy cost, creating an inconvenience for
users on batter-constrained mobile devices. At the same time,
due to the meteoric rise of the numbers apps provisioned on
app repositories, there are often multiple apps from the same
category (e.g., weather, dictionary) that provide similar features.
In spite of similar functionality, the apps may present very
different energy costs, due to the choices made in their design and
construction. Given apps with similar features, users would prefer
an app with the least energy cost. However, app repositories
are currently lacking information about relative energy cost of
apps in a given category, forcing the users to blindly choose
an app for installation without a clear understanding of its
energy implications. To address this issue, we have developed
EcoDroid, an approach that ranks apps from the same category
based on their energy consumption. To that end, EcoDroid uses
both static and dynamic analyses to estimate energy consumption
of apps in the same category and rank them accordingly. Our
initial experiments have demonstrated the ability of EcoDroid
in accurately ranking the energy cost of multiple apps from a
particular category.

I. INTRODUCTION

Android has become one of the dominant mobile platforms.
Android app repositories, such as Google Play [3], have
created a fundamental shift in the way software is delivered
to consumers, with thousands of apps added and updated on
a daily basis. Recent studies [11], [16] have shown energy
consumption of apps to be a major concern for end users;
however, app repositories provide no, or very limited, infor-
mation as to the energy efficiency of apps provisioned on these
repositories.

Given the proliferation of apps, it is often the case that many
apps provide similar features, but with different implementa-
tion choices, thereby impacting their energy consumption. For
instance, Google Play hosts dozens of highly rated weather
apps, providing almost identical features, as depicted in Fig-
ure 1. These apps share highly similar features and ratings,
but do not provide any readily available information as to their
energy costs to help the user make an informed decision.

To make this information available for an entire app repos-
itory, a systematic approach is needed for repository main-
tainers or app developers to automatically produce accurate
rankings of similar apps in terms of their energy consumption.
Energy ranking of two apps α and β is accurate if α is ranked
lower than β only when the actual energy cost of α is lower
than β.

Accurate energy ranking of apps is challenging, as it re-
quires estimating the representative usage of apps by users.
Each app in a category must be exercised in a similar, uniform
manner, to avoid gross over- or underestimation of an app’s
actual energy consumption. In addition, to accurately obtain
energy rankings, an approach must account for all behaviors
of an app that constitute significant energy consumption. An-
droid API methods represent one significant source of energy
consumption. These methods typically constitute 80% of an
entire app’s energy consumption [14]. Without exercising or
representing these methods, the approach significantly under-
estimates the energy consumption of an app. Moreover, certain
behaviors recur during an app’s execution (e.g., due to loops,
callbacks, scheduling mechanisms, etc.). Consequently, the
repeated occurrence of such behaviors must be characterized
appropriately.

To address these issues, we introduce EcoDroid, a novel
approach for estimating and ranking the energy consump-
tion of Android apps using a combination of dynamic and
static analyses. EcoDroid uses automatically generated test-
cases to execute apps and estimates their energy cost based
on their API usage. These estimates take into account the
energy cost of the paths executed by test-cases. Comparing
energy consumption based on covered statements alone may
introduce significant error due to the varying, and possibly
low, coverage of generated tests using existing Android test
automation tools. Moreover, the executed paths from generated
test-cases may not cover energy-greedy behaviors of an app

Fig. 1: A snapshot from Google Play showing suggested apps
resulting from a “Weather” keyword search.



Fig. 2: EcoDroid Framework.

that have a substantial impact on its energy consumption.
To address this limitation, EcoDroid leverages a novel static
analysis to estimate the energy consumption of parts of an
app that automatically generated tests do not execute. EcoDroid
combines the static and dynamic results to produce an energy-
consumption score for the app that is then used to rank
the app. App repository maintainers would utilize EcoDroid’s
rankings to aid end users in deciding which apps in a category
(e.g., weather or news reader) meets their energy-consumption
needs. App developers would utilize EcoDroid energy score to
evaluate and improve the efficiency of their apps

We demonstrate EcoDroid’s accuracy through a pilot study
on a set of apps from the dictionary category. Our study shows
that the ranking produced by EcoDroid’s combined use of static
and dynamic analysis highly corresponds to the ground-truth
ranking, which measures the actual energy consumption of
apps. Furthermore, we demonstrate that EcoDroid’s ranking
is significantly closer to the ground-truth ranking than the
ranking produced by an estimate based on dynamic analysis
alone.

The remainder of this paper is organized as follows. Sec-
tion II explains research challenges that arise when measuring
and estimating the energy consumption of mobile apps. Sec-
tion III describes the details of the approach. Section IV- V
present the implementation and evaluation of EcoDroid. The
paper then outlines related research and concludes with a
discussion of future work.

II. RESEARCH CHALLENGES

Measuring and estimating the typical energy consumption
of an app entail determining its representative use-cases. Such
use-cases can be provided by the app developers in the form
of manually constructed tests, recorded from users’ phone
logs over a sufficient period of time, or generated using test
automation tools. Unfortunately, very few apps in open-source
repositories provide test-cases, which are mostly limited to
unit tests and not representative of the app’s typical usage.
Similarly, collecting information about usage of apps from
users is challenged by the privacy issues (e.g., logging of
sensitive user data), as well as the overhead associated with
collection of data.

Most prior research has studied energy behavior of mo-
bile apps by manually utilizing and running apps several
times [10], [13], [14]. However, such a manual process is
neither systematic (e.g., may fail to exercise certain features

of the app), nor scalable for use on an entire repository of
apps. To address this issue, Li and colleagues [12] proposed
leveraging Monkey [5], a widely used Android test generation
tool, to automatically interact with apps and collect energy
measurements. Monkey is a command-line tool that generates
pseudo-random streams of user events such as clicks, touches,
or gestures, as well as a number of system-level events. Li
and colleagues considered statement coverage as a criterion to
measure the extent to which automatically generated tests are
representative of an app’s typical use-cases. However, several
issues arise with using statement coverage to represent typical
usage of an app for analyzing its energy consumption.

Statement coverage, even when particularly high, can sig-
nificantly misrepresent energy usage, because uncovered code
may have a substantial impact on the energy cost. Prior
research has shown that energy costs vary significantly across
bytecodes [9], lines of code [13], and system APIs [14]. A
test suite with high statement coverage may still not execute
code that utilizes energy-greedy API calls. For example, APIs
related to GUI and image manipulation tend to be particularly
energy greedy. To measure and estimate energy consumption
of an app, it is crucial to have tests that cover the energy-
greedy parts of code.

Statement coverage for energy estimation is further unable
to capture constructs involving statements that may execute
many times. Specifically, statement coverage does not take into
account statements that may execute in a loop or a recurring
callback (e.g., due to thread scheduling or setting alarms on
a mobile device). Mobile apps frequently utilize loops and
call backs, making them important factors to consider for
determining energy consumption of apps.

To overcome the limitations of statement coverage, we
propose a new coverage criterion that indicates the degree to
which energy-greedy statements of a program are tested. This
new coverage criterion discriminates among different energy-
greedy statements based on their energy cost and whether
they re-execute due to recurring constructs, such as loops and
callbacks.

Relying only on generated tests, even if they achieve high
code coverage, can bias the energy measurement toward the
executed statements. While dynamic analysis approaches, like
testing and profiling, provide energy-related information about
executed statements of an app, static analysis can be used
in tandem to determine energy behavior of the unexplored
statements. Prior research has leveraged program analysis to



track energy-related information during execution and map
them to executed paths in order to measure/estimate energy
consumption [10], [13]. To the best of our knowledge, no
previous work has used static analysis to estimate the energy
cost of the statements that are not covered by dynamic
analysis.

EcoDroid overcomes the aforementioned challenges by com-
bining static analysis with dynamic analysis in a complemen-
tary fashion to estimate the energy behavior of mobile apps.
The reminder of the paper describes our proposed approach
in detail.

III. APPROACH

The overall EcoDroid framework is shown in Figure 2.
EcoDroid consists of three main components: (1) Dynamic
Model Extractor (DME), which automatically generates ran-
dom tests and provides path information; (2) Static Model
Extractor (SME), which statically analyzes an app to obtain
a call graph annotated with energy cost estimates; and (3)
Analyzer, which combines information about executed paths
and energy estimates from the annotated call graph in order
to generate energy labels for each app.

We illustrate the manner in which EcoDroid computes the
energy cost estimation of an app, using the call graphs of two
hypothetical apps—app1 and app2—as depicted in Figure 3.
Each method in a call graph is annotated by a number
representing the estimated energy consumption of the method,
where greater values for a method indicate higher energy
consumption.

A. Dynamic Model Extractor

DME is responsible for interacting with apps in order to
generate test-cases and convert the test events (e.g., Android
Intent messages and GUI events) to path information, which
will be used later by Analyzer to estimate the energy consump-
tion of the apps. DME accepts Android app package archives
(APK) files as input and extracts the dynamic model of each
app to reason about its energy-consumption behavior.

The dynamic model is defined as a set of paths, P =
{p1, p2, ..., pm}, where m is the number of test-cases gen-
erated during app execution. The path pi is represented as
a sequence of app-method and Android API invocations
〈m1〈a11...1k〉,m2〈a21...2k〉, ...,mn〈an1...nk

〉〉, where mi indi-
cates invocation of the ith method and ai1...ik denotes a
sequence of Android APIs, ai1 to aik , called within method
mi. In the example shown in Figure 3, DME generates
a set of two paths for each app. For example, the dy-
namic model for app1 is P1 = {p1, p2} and p1 =
〈A〈aA1

〉, C〈aC1
〉, D〈aD1

〉, G〈aG1
〉〉. Each method presented

in p1 invokes one system API; however, our approach takes
into account multiple APIs executed in a single method.

To extract a dynamic model, we utilize Monkey [5], an
Android test-case generation tool, to run apps on Android
devices. In each run, Monkey generates random sequences of
user/system events, which correspond to executed paths in the
dynamic model. To obtain dynamic path information, we have

Fig. 3: Call graph and executed paths of two Android apps.

implemented a profiler module based on Xposed [6], which
logs each method invoked by events generated by Monkey.

B. Static Model Extractor

To estimate energy consumption of an app, SME first
extracts the app’s call graph (CG), which is a graph capturing
the different possible invocation sequences within an app. We
utilize Soot [15], a program analysis framework for Java, to
statically analyze an Android app and extract its CG. EcoDroid
annotates each CG node n (i.e., method in an Android app)
with a node score sn, which represents the estimated amount
of energy consumed at each node. This score depends on the
energy consumption of specific Android APIs invoked in n and
the manner in which those APIs are invoked (e.g., whether an
API is invoked in a loop). The precise energy consumption
of individual APIs can be measured using hardware-based
power monitors, such as Monsoon [4]. Linares-Vásquez et
al. [14] have empirically studied and measured the energy
consumption of Android APIs. Their results are used by
EcoDroid to determine energy consumption of an Android
API. Consequently, EcoDroid takes a list of such Android API
energy measurements as input. SME calculates node score as
follows:

sn = rn ×
mn∑
i=0

êi (1)

where rn denotes the number of paths in the CG through
which node n is reachable; mn is the number of Android
APIs used in the implementation of the method that node
n represents; and êi represents the energy consumption of
an Android API i. We motivate and explain the two key
components of sn—rn and êi—in the remainder of this
section.

A naive assumption in energy cost estimation is to score
each method n independently of the paths through which
it may be invoked. This assumption is problematic because
methods reachable along more paths in a CG are more likely to
contribute in the energy cost of the app than methods reachable
along fewer paths. To account for the energy effects of the
number of paths through which a method can be invoked, sn
includes the component rn. As shown in Figure 3, four paths
can pass through node G in app2’s CG; thus, rG = 4.



SME must discriminate CG nodes according to the APIs
they invoke such that two nodes with distinct sets of API
invocations are likely to obtain different scores. This distinc-
tion is captured in the model: A node that invokes APIs with

higher energy consumption has a greater value for
mn∑
i=0

êi,

compared to another node which calls less energy-greedy
APIs. In addition, Representing recurring executions of APIs
in a single statement is important for precise energy estimation.
For example, APIs executed inside of loops are likely to
contribute more to energy cost of an app than APIs executed
outside of loops.

Two types of repeated executions are key to accurate en-
ergy estimation: (1) iterations over a data structure, and (2)
services that continuously/periodically run, even if the app
is idle. While Java loop structures are used to implement
the former, Android provides services for scheduling repeated
tasks for the latter (e.g. the AlarmManager, LocationMan-
ager, and ScheduledExecutorService). For example, methods
of ScheduledExecutorService—which are used to create and
schedule a recurring task—have parameters that define inter-
vals between subsequent repeated executions. As shown in
Figure 4, an instance of ScheduledExecutorService is created
to execute a periodic action (i.e. receive updated weather data)
every 30 seconds.

To include repeated executions in the model, SME considers
an API i’s energy consumption as follows:

êi = ei × fi × c (2)

where ei is the pre-measured energy consumption of API i
given as an input; c denotes the number of times the API i is
expected to execute in a loop; and fi denotes the frequency
for which i is expected to execute when scheduled as part
of a repeated task. For c, SME extracts either (1) a constant
loop bound, if such a bound can be obtained statically, or (2)
if a loop bound cannot be determined statically, it assumes a
configurable number of iterations. fi is defined as fi = ttce

T ,
where ttce is the average test-case execution time determined
by DME, and T is the time period between executions of i.

To calculate fi, EcoDroid first extracts the timing parameter
of the corresponding APIs. To that end, we consult Android
API documentation to specify the time-related parameters. For
instance, consider scheduleAtFixedRate(Runnable
command, long Delay, long period, TimeUnit
unit), the API method of ScheduledExecutorService in Fig-
ure 4. The third parameter, period, represents the duration
between successive executions for the associated service and
is used to determine the value of T . In Figure 4, ttce is
determined by DME to be 5 minutes and T is set to 30
seconds, resulting in fi = 10. Consequently, the energy cost
of all APIs called in the updateWeather method are multiplied
by a factor of 10, as they could be invoked at most 10 times
by ScheduledExecutorService during the 5-minute test-case
execution.

Fig. 4: Parts of the code corresponding to the call graph of
app 1 shown in Figure 3.

C. Analyzer

As depicted in Figure 2, Analyzer’s Score Calculator com-
putes (1) the dynamic cost, Dscore, from a set of executed
paths obtained from DME, and (2) the coverage score, Cscore,
from the annotated CG produced by SME. Due to the limited
coverage of state-of-the-practice automatic test-case genera-
tion tools for Android (e.g., Monkey), Analyzer normalizes
Dscore with a coverage score, Cscore, to equitably compute
estimated energy of apps for further comparison. For a set
of paths P , Score Calculator computes the dynamic cost as
follows:

Dscore =

ρ∑
i=0

αi∑
j=0

eij

ρ
(3)

where ρ denotes the number of paths; and αi denotes the
number of APIs invoked in path i. The eij parameter indicates
the amount of energy consumed by the jth API called in the
ith path.

Score Calculator also computes a hybrid coverage score,
Cscore, by combining static and dynamic models from SME
and DME. To that end, Score Calculator maps the executed
paths to the annotated CG and computes the Cscore as follows:

Cscore =

m∑
i=0

si

n∑
j=0

sj

(4)

where n is the total number of nodes in the annotated CG;
and m is the number of nodes that are covered in at least one
path.
Cscore aims to compensate for the potentially low coverage

of generated test-cases. To that end, the numerator considers
CG nodes covered by paths, and the denominator represents
all the nodes in the CG. As the number of nodes in the CG
covered by executed paths grows, Cscore increases (up to a
value of 1), thereby executed paths more thoroughly cover
the annotated CG, and Dscore more accurately represents the
typical energy consumption of the app under analysis.

Once Score Calculator produces Dscore and Cscore, Label
Generator computes an overall energy estimate eindex as
follows:

eindex = Dscore/Cscore (5)



Based on this overall estimate, Label Generator assigns
each app a label from A to E (recall Figure 2). Label A rep-
resents apps that are most energy efficient, while E designates
those that are most energy expensive. To generate labels, Label
Generator ranks apps based on their eindex, categorizes them
into 5 groups, and assigns labels to each group. By utilizing
an ordinal scale, end users can easily distinguish and compare
apps in terms of their energy consumption. Moreover, since
our goal in this work is to determine the proper energy labels
for similar apps, rather than determining the exact energy cost
of apps, our approach is resilient to inevitable small estimation
errors.

EcoDroid avoids a bias in analysis caused by execution
of paths that consume an extremely low or high amount of
energy. This is achieved through the normalization of Dscore

by Cscore. Specifically, for executed paths with particularly
high energy consumption—and thus a high Dscore—in the
annotated CG, the value of Cscore is also high. This results
in an eindex that is not severely affected by the particularly
high energy consumption of the executed paths. A similar
phenomenon occurs for executed paths with particularly low
energy consumption.

To illustrate, consider the example in Figure 3. Taking
only the energy cost of executed paths into account, app1
purportedly consumes more energy than app2. That is, exe-
cuted paths in app1 hit more energy-greedy nodes, nodes in
colored green, compared to app2. However, this conclusion is
inaccurate since the CG of app2 contains energy-greedy nodes
that although are not covered by current paths, but may highly
contribute to actual energy cost of the app. Thus, to reduce
the bias of purely dynamic estimation on energy cost, Dscore,
we normalize it with Cscore, to equitably compute estimated
energy cost of an app.

IV. IMPLEMENTATION PROTOTYPE

This section describes some of the key implementation
choices underlying EcoDroid’s prototype. The DME compo-
nent takes the APK file of an app as input and uses Monkey
to interact with apps and generate random test-cases. While
running Monkey on a mobile device, a rooted Nexus 5 with
a Qualcomm Snapdragon chipset, a module implemented
using the Xposed [6] framework records the invocation of
methods and system APIs in a log file. The log file is later
processed to extract information about the executed paths in
each app. Xposed instruments the root Android process (called
Zygote), rather than instrumenting an app’s implementation.
Thus, EcoDroid does not modify an app’s APK file. The
major advantages of using run-time process instrumentation
over modifying individual apps are scalability and framework
generalization. An Xposed module pinpoints methods and
system APIs for any app installed on an Android device,
precluding the need to instrument and modify every single
app under study. Additionally, instrumentation of APK files
changes the signature of apps, which might prevent their
proper execution.

TABLE I: Ranking of subject apps based on energy cost mea-
sured/estimated by Trepn, EcoDroid, and dynamic approach.

Apps Trepn EcoDroid Dynamic
Rank Rank Rank

com.amaltus.rt 1 1 3
an.FilipTranslate 2 2 2
com.cnasoft.dictek 3 3 6
com.appdjinnis.android.thesaurus 4 5 1
org.smartdict 5 4 5
com.merriamwebster 6 6 4

SME uses Dexpler [7] to translate an app’s Android Dalvik
bytecode into Soot’s intermediate representation language.
The Android platform is event-driven and leverages implicit
invocations, i.e., method invocations performed by the Android
platform in response to an event. Soot does not extract implicit
invocations. To support such invocations, SME extends the
default call-graph generator of Soot so that the resulting call
graph includes them. To generate a call graph that takes
implicit invocation into account, we need to include callbacks
of an app. These are Android APIs that no other part of the
app explicitly invokes. To that end, we traverse the nodes of
the corresponding control-flow graph in a depth-first manner,
and connect all nodes that make implicit invocations with
the corresponding callback nodes. SME then traverses the
generated call graph to calculate node score sn for each node
of the call graph and annotates the nodes with these scores.

V. EVALUATION

We have conducted a preliminary evaluation of EcoDroid
to assess its overall accuracy in ranking apps from a given
category according to their energy costs. This section first
describes our experiment setup, followed by the results.

Apps are categorized under 26 classes on Google Play.
However, we divide each of the pre-defined categories in
Google Play into sub-categories, such that apps in the new
categories have similar set of features. To categorize apps, we
manually defined sub-categories (e.g., Dictionary, Calendar,
and Calculator). We then used a modified version of Google
Play Crawler [2] to start from one app in the defined sub-
categories and find its closely related apps. Crawling for each
subcategory continues until a pre-specified number of apps are
found or no new apps are added.

For our preliminary experiment described in this paper, we
chose 6 apps from the Dictionary category, which are among
the top dictionary apps on Google Play. The reason behind
selecting dictionary apps is that they have simple and limited
use-case scenarios that can be explored and executed in a
reasonable time, allowing us to obtain accurate ground-truth
estimates.

To obtain the ground-truth estimates, we defined use-cases
and ran each app several times with different settings. Example
use-cases include looking up, adding, and deleting words in a
dictionary. Apps from other categories may require specialized
domain knowledge to identify typical use-case scenarios. For
future work, we intend to conduct a comprehensive user study
to reliably and accurately obtain typical usage for apps from



such categories. We then used Trepn [8], a profiler tool that
measures actual energy consumption of Android apps, to
obtain ground-truth energy costs of apps. Trepn is designed
to measure an app’s effect on power, data, and CPU. It
helps developers to observe how programming choices affect
power consumption in order to write power-aware apps. Trepn
uses a series of sensors embedded on Qualcomm Snapdragon
chipsets to monitor power consumption.

Since the majority of prior energy estimation approaches
are based on dynamic analysis techniques, and one of the
key contributions of EcoDroid is its hybrid static and dynamic
analysis approach to energy estimation, we also compared
EcoDroid against a purely dynamic solution. The Dynamic
solution we used in our experiments computes the Dscore to
estimate the energy consumption of an app (recall Section III)

Table I shows the ranking of subject apps according to en-
ergy values computed by the three approaches: Trepn (ground-
truth), EcoDroid, and the dynamic approach. The similarity
of the rankings are measured using Spearman’s rank corre-
lation coefficient, which can take values from −1 to +1. A
coefficient of +1 indicates a perfect association of ranks; a
coefficient of 0 indicates no association between ranks; and
a coefficient of −1 represents perfect negative association of
ranks. We calculated Spearman’s coefficient between Trepn
and EcoDroid, as well as Trepn and the dynamic approach.
The coefficient of Trepn’s and EcoDroid’s rankings is 0.943;
the coefficient of Trepn’s and the dynamic approach’s rankings
is 0.371. Thus, EcoDroid’s ranking very closely resemble the
ground-truth ranking, while the dynamic approach’s ranking
is nowhere close to the ground-truth ranking.

Figure 5 visualizes the relative energy ranks produced by the
three approaches for the six studied apps. A relative energy
rank is defined as rapp =

scoreapp
maxScore , where scoreapp is the

energy score for an app computed by one of the approaches
and maxScore is the largest score obtained among apps that
are to be ranked. rapp normalizes the energy cost of each
app by the energy cost of the app with the greatest energy
score. Consequently, for each of the three approaches, each
app obtains a score relative to each other. As shown in Figure
5, the ranks of 6 studied apps provided by EcoDroid are very
similar to that obtained by Trepn. On the contrary, the ranks
produced by the purely Dynamic solution are very different
from that of Trepn.

Our experiments, thus, corroborate the benefits of a hybrid
static and dynamic analysis approach for energy ranking, as
EcoDroid is able to produce a more accurate ranking compared
to the purely dynamic approach that has been widely used in
profiling the energy cost of mobile apps.

VI. RELATED WORK

There is a large body of work on energy consumption
of Android apps. Prior related studies can be categorized in
two ways: power modeling and power measurement. Research
in power modeling suggests estimating the energy usage of
mobile devices or apps in the absence of hardware power
monitors [10], [13]. These software-based approaches build

Fig. 5: Visualization of rankings provided by Trepn, EcoDroid,
and dynamic approach.

models and capture model parameters from programs using
static-analysis techniques. Compared to our approach, most of
these techniques do not utilize power-measurement devices,
or do not consider the hardware platform. These approaches
over-approximate energy estimation and cannot be used for a
fair comparison among different apps.

Studies in power measurement make use of specialized
hardware, such as Monsoon, and map the sampled mea-
surements to execution traces to determine an app’s energy
consumption at various granularities. Our approach leverages
the power measurements of Linares-Vásquez et al. [14] to
obtain energy-consumption estimates for Android APIs.

To the best of our knowledge, EcoDroid is the first work
that has attempted to rank Android apps according to their
energy consumption using a hybrid static and dynamic analysis
approach. Closely related to our approach are vLens [13],
eLens [10], and the work by Li et al. [12]. vLens provides
fine-grained estimates of energy consumption at the code level
by combining program analysis and per-instruction energy
modeling. vLens can be used by developers for estimating
the energy consumption of their apps. Unlike EcoDroid, vLens
assumes the input workload of the approach is provided by
developers who are aware of an app’s behavior. Although the
test-cases provided by developers is the best way to interact
with apps, many apps from app repositories do not come with
test-cases. In addition, for the purpose of energy estimation,
the test-cases provided by developers might be biased, and
may not represent the typical usage of apps.

eLens is an extension of vLens, which is able to calcu-
late source line-level energy consumption information. eLens
combines hardware-based power measurements with program
analysis and statistical modeling. Similar to vLens, eLens
assumes that the test-cases are provided by developers. eLens
and vLens are orthogonal to EcoDroid, as they calculate energy
consumption of mobile apps at different levels of granularity.
EcoDroid uses the pre-measured energy consumption of An-
droid APIs as an input to the approach. This list of APIs and
measured values can be replaced by the measurements ob-
tained from other similar approaches (e.g., eLens and vLens).



Li et al. [12] conducted an empirical study to discover
quantitative and objective information about the energy behav-
ior of apps that can be used by developers. To interact with
an app, the authors utilize Monkey for test generation and
vLens to estimate the energy cost of an app. Although they
excluded test-cases with less than 50% statement coverage, our
preliminary evaluation demonstrates that statement coverage
suffers from limitations as a criterion for test-case quality
measurement in the context of app energy consumption. In
addition, EcoDroid estimates the energy cost by considering
information from program statements that are not covered by
generated tests. Our preliminary results show that EcoDroid’s
approach for estimating energy cost is more accurate compared
to relying only on executed paths.

VII. LIMITATIONS OF ECODROID

EcoDroid aims to generate an accurate energy ranking for
Android apps. As a result, it does not intend to estimate
the exact energy consumption of apps. Therefore, estimates
produced by EcoDroid can tolerate a certain level of inaccuracy
as long as the ranking remains the same. We have attempted to
address the major sources of inaccuracy. However, we also had
to strike a balance by making certain assumptions to improve
EcoDroid’s scalability and ease of applicability, which may
impact the accuracy of its estimates.

EcoDroid is a lightweight approach that helps repository
maintainers and developers to understand energy behavior
of apps from the same category by assigning energy labels
to them. It does not require developers to use specialized
hardware, or instrument the apps, which may cause run-time
failure. EcoDroid takes the pre-measured energy consumption
of APIs (or lines of code) as an input and estimates the energy
cost according to these values. Therefore, the accuracy of
estimation depends on the precision of these pre-measured
values. We use the outcome of a published study [14] that
measures the energy consumption of APIs observed in diverse
apps from Google Play.

In order to calculate sn in Equation 1, we assumed that
all the APIs used in the implementation of node n would
be reachable. However, it is possible that APIs are invoked
through branches, where only a portion of them are invoked
through node n. One naive assumption is to consider the same
probability for each branch to be taken and compute sn as

sn = rn ×
mn∑
i=0

êi × pi, where pi is the probability that ei is

invoked through the node. However, the probability of different
branches are different and calculating precise probability is a
challenge in its own right. Therefore, EcoDroid simply assumes
that all the APIs within the implementation of a method will
be called through its invocation.

EcoDroid calculates êi using Equation 2. If a loop bound
can be obtained from the source code (recall Section III-D),
EcoDroid leverages this value for estimating êi. Otherwise, it
assumes a constant number of iterations for the loop, which
can be configured by the user. The second method may impact
the accuracy of the approach. However, from exploring several

open-source apps from F-Droid [1], we discovered that loops
in such apps mostly iterate over data structures where the
bound can be obtained statically.

VIII. CONCLUSION AND FUTURE WORK

Energy is a critical resource for mobile devices. Optimizing
the energy efficiency of mobile apps can greatly increase user
satisfaction. While users often have a choice of numerous apps
providing similar functionality, app repositories currently do
not provide users with the energy information that would allow
them to make informed decisions.

To address this issue, we presented EcoDroid, a hybrid static
and dynamic analysis technique that estimates the energy cost
of apps from a given category and ranks them accordingly.
Our preliminary evaluation of EcoDroid on six real-world
apps shows that EcoDroid accurately ranks apps according to
their energy consumption. Since our goal in this work is to
determine the proper energy labels for similar apps, rather
than determining the exact energy cost of apps, our approach is
resilient to inevitable small estimation errors. App repository
maintainers can utilize EcoDroid’s rankings to aid end users
in deciding which apps in a category (e.g., weather or news
reader) meets their energy-consumption needs. App developers
can utilize EcoDroid energy score to evaluate and improve the
efficiency of their apps

IX. ACKNOWLEDGMENT

This work was supported in part by awards D11AP00282
from the US Defense Advanced Research Projects Agency,
H98230-14-C-0140 from the US National Security Agency,
HSHQDC-14-C-B0040 from the US Department of Homeland
Security, and CCF-1252644 from the US National Science
Foundation.

REFERENCES

[1] “F-droid,” https://f-droid.org.
[2] “Google play crawler,” http://goo.gl/BFc51M.
[3] “Google play market,” http://play.google.com/store/apps.
[4] “Monsoon,” http://goo.gl/8G7Xgf.
[5] “UI/Application Excersizer Monkey,” http://goo.gl/6EN2gi.
[6] “Xposed Framework,” http://goo.gl/9UKa0Z.
[7] A. Bartel, J. Klein, Y. LeTraon, and M. Monperrus, “Dexpler: Converting

android dalvik bytecode to jimple for static analysis with soot,” in The
Intl. Workshop on State of the Art in Java Program analysis, 2012.

[8] L. Ben-Zur, “Developer Tool Spotlight - Using Trepn Profiler for Power-
Efficient Apps,” http://goo.gl/ESxXzi.

[9] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating android
applications’ cpu energy usage via bytecode profiling,” in The Intl.
Workshop on Green and Sustainable Software, 2012, pp. 1–7.

[10] ——, “Estimating mobile application energy consumption using pro-
gram analysis,” in The Intl. Conf. on Software Engineering, 2013.

[11] M. V. Heikkinen, J. K. Nurminen, T. Smura, and H. Hämmäinen,
“Energy efficiency of mobile handsets: Measuring user attitudes and
behavior,” The Telematics and Informatics, 2012.

[12] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of
the energy consumption of android applications,” in The Intl. Conf. on
Software Maintenance and Evolution, 2014.

[13] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in The Intl.
Symposium on Software Testing and Analysis, 2013, pp. 78–89.

[14] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: An empirical study,” in The Working Conf. on
Mining Software Repositories, 2014.

https://f-droid.org
http://goo.gl/BFc51M
http://play.google.com/store/apps
http://goo.gl/8G7Xgf
http://goo.gl/6EN2gi
http://goo.gl/9UKa0Z
http://goo.gl/ESxXzi


[15] R. Valle é-Rai, P. Co, E. Gagnon, L. Hendren, and V. Lam, P.and Sun-
daresan, “Soot-a java bytecode optimization framework,” in The Conf.
of the Centre for Advanced Studies on Collaborative research, 1999.

[16] C. Wilke, S. Richly, S. Gotz, C. Piechnick, and U. Aßmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in The Internation Conf. on Green Computing and Communi-
cations, 2013.


	Introduction
	Research Challenges
	Approach
	Dynamic Model Extractor
	Static Model Extractor
	Analyzer

	Implementation Prototype
	Evaluation
	Related Work
	Limitations of EcoDroid
	Conclusion and Future Work
	Acknowledgment
	References

